SHORT COMMUNICATION

On the Synthesis of the $N_2F_5^+$ Cation. A Critical Comment on the Paper by Toy and Stringham.

K. O. Christe, C. J. Schack, and R. D. Wilson

Rocketdyne, A Division of Rockwell International, Canoga Park, California 91304 (USA)

Toy and Stringham recently reported [1] the synthesis of $N_2F_5^+$ (CF₃)₃CO⁻, a salt containing the novel pentafluorohydrazinium cation. This cation would be of significant academic and practical interest [2] since it would constitute the first known example of a substituted NF⁺₄ cation, i.e. an NF⁺₄ cation in which a fluorine ligand is replaced by an NF₂ group. According to the authors of [1], $N_2F_5^+$ (CF₃)₃CO⁻ was formed in a very unusual reaction involving the transfer of a fluorine cation from (CF₃)₃COF to N_2F_4 according to:

$$(CF_3)_3 COF \longrightarrow (CF_3)_3 CO^- + F^+ \longrightarrow N_2F_5^+ (CF_3)_3 CO^-$$

Since such a heterolytic fission [3] of $(CF_3)_3COF$ with F^+ formation is unlikely, the reported [1] synthetic and spectroscopic evidence for $N_2F_5^+(CF_3)_3CO^-$ was critically reviewed. The following points indicate that the reported white solid is not $N_2F_5^+(CF_3)_3CO^-$, but most likely the known [4] compound $(NO^+)_2SiF_6^{2}$.

(1) The reference, cited by the authors of [1] for the known existence of $N_2F_5^+$, is Sheppard and Sharts' book on Organic Fluorine Chemistry (Benjamin, New York 1969, page 328). Although this book lists the reaction of N_2F_4 with AsF_5 to yield $N_2F_5^+AsF_6^-$, this is clearly a typographical error. Examination of the original reference [5] shows that the product from this reaction is $N_2F_3^+AsF_6^-$, in agreement with other previous reports [6,7], and unpublished results from this laboratory.

(2) It was also reported [1] that the white solid was formed only in a Pyrex vessel, but not in a copper vessel. The slow reaction proceeded with the formation of a brown gas. This is charcteristic of the well known [8] attack of glass by nitrogen fluorides to form $(NO)_2SiF_6$ as the principal product. The observed [1] weight of the solid product (50% yield based presumably on the molecular weight of $N_2F_5^+(CF_3)_3CO^-$) is in fair agreement with that expected for a high yield formation of $(NO)_2SiF_6$ according to:

$$N_2F_4 + 2(CF_3)_3COF \longrightarrow 2NF_3 + (CF_3)_3COOC(CF_3)_3$$

2NF₃ + Si0₂ \longrightarrow (NO)₂SiF₆

Unfortunately, no elemental analysis was reported for the white solid, and its identification was based only on infrared, mass, and $^{19}{\rm F}$ nmr spectroscopy.

- (3) For the infrared spectrum of the solid, pressed as a NaCl disk, the following absorptions were reported [1]: 1450 (s), 1233 (s), 809 (vs), 730 (vs), and 480 (s) cm⁻¹. These bands do not agree with expectations for either a tertiary perfluorobutoxy group [9,10] or a nitrogen fluoride cation [2, 7, 11]. However, the bands at 730 and 480 cm⁻¹ are in excellent agreement with those of the SiF₆²⁻ anion [12]. The bands at 1450 and 1233 cm⁻¹ are characteristic [12] for the HF_2 anion, which could readily form from (NO)₂SiF₆ and NaCl in the presence of moisture. No infrared data were reported for the higher frequency range which would allow a positive identification of the N0⁺ cation.
- (4) For the mass spectrum only 4 mass peaks were reported [1] at 104, 85, 71 and 52 m/e. The peaks at 104 and 85 were assigned to $N_2F_4^+$ and $N_2F_3^+$, respectively, but since N_2 has the same mass as Si, they can equally well be assigned to SiF $_4^+$ and SiF $_3^+$. Based on their observed relative abundances of 2 and 100, respectively, we prefer their assignment to SiF $_4$ [13], which is the product expected for the thermal dissociation of a SiF $_6^2$ salt. It is important to note that no fragments due to $(CF_3)_3CO^-$ could be detected [1] for the white solid.

(5) The ¹⁹F nmr spectrum of an HF solution of the product showed at room temperature only one exchange broadened resonance at $\phi=204$ due to HF. On cooling to -80° C a singlet at $\phi=149$ appeared which was assigned [1] to the $(CF_3)_3CO^-$ anion. However, for a tertiary perfluorobutoxy group a resonance around $\phi=70$ should be expected [9, 10]. Furthermore, we cannot envision a mechanism which could provide for a rapid fluorine exchange between the covalent CF_3 groups and the HF solvent. On the other hand, the observed chemical shift and exchange characteristics are in line with expectations for a silicon fluoride. Unpublished work in this laboratory has shown that the ${\rm SiF}_4^{2-}$ anion is unstable in HF solution undergoing solvolysis according to SiF₆²⁻ + 2HF \implies SiF₄ + 2HF₂. The chemical shifts reported for SiF $_{4}^{2}$ in CCl₄ and SiF $_{6}^{2-}$ in H₂O are ϕ =160 and 126, respectively, and acid was found to catalyze fluorine exchange between SiF_6^{2-} and F^{-} [14].

In summary, all the experimental data available for the reported [1] white solid are consistent with a hexafluorosilicate salt, such as $(NO)_2SiF_6$, but cannot be reconciled with the proposed composition $N_2F_5^+(CF_2)_2CO^-$.

Very recently, Stringham and Toy have also claimed [15] the synthesis of $N_2F_5^+BF_4^-$ by the photolytic reaction of N_2F_4 and BF_3 in the presence of fluorine below -100°C. Based on our experience, these reaction conditions are not likely to produce an $N_2F_5^+$ salt. Generally, compounds containing-NF₂ groups readily undergo fluorination to NF₃ during photolysis, followed by formation of NF $_4^+$ salts [16]. If the reaction is carried out in glass, formation of FNO is also possible, which can result in the formation of NO⁺BF $_4^-$. Unpublished work in this laboratory has also shown that N_2F_4 does not form a stable adduct with BF₃ at temperatures as low as -78°C. At -78°C, an equimolar mixture of N_2F_4 and BF₃ is still liquid and can be transferred quantitatively from trap to trap. Therefore, the only solid products expected from the photolysis of N_2F_4 -F₂-BF₃ mixtures in glass are NF₄BF₄ and BF₄ salts of N0⁺ or N0⁺₂.

We are indebted to Drs. L. R. Grant and W. W. Wilson for helpful discussions. This work was supported, in part, by the Office of Naval Research.

- 1 M. S. Toy and R. S. Stringham, J. Fluorine Chem., 7, 229 (1976).
- 2 K. O. Christe, Inorg. Chem., <u>16</u>, 2238 (1977), and references cited therein.
- 3 K. O. Christe, R. D. Wilson, and A. E. Axworthy, Inorg. Chem., <u>12</u>, 2487 (1973), and K. O. Christe and I. B. Goldberg, Inorg. Chem., in press.
- 4 A. A. Woolf, J. Chem. Soc., 1053 (1950).
- 5 Chem. Eng. News, 45, 80 (June 12, 1967).
- 6 A. R. Young and D. Moy, Inorg. Chem., <u>6</u>, 178 (1967).
- 7 A. M. Qureshi and F. Aubke, Canad. J. Chem., <u>48</u>, 3117 (1970).
- 8. 0. Glemser and U. Biermann, Chem. Ber., 100, 1184 (1967).
- 9 D. E. Young, L. R. Anderson, D. E. Gould, and W. B. Fox, J. Amer. Chem. Soc., 92, 2313 (1970).
- 10 J. H. Prager and P. G. Thompson, J. Amer. Chem. Soc., <u>87</u>, 230 (1965).
- 11 K. O. Christe, R. D. Wilson, and W. Sawodny, J. Mol. Struct., <u>8</u>, 245 (1971).
- 12 H. Siebert, Schwingungsspektroskopie in der Anorganischen Chemie, Anorganische und Allgemeine Chemie in Einzeldarstellungen, VII, Springer Verlag, Berlin (1966).
- 13 Mass Spectral Data, American Petroleum Institute Research Project 44 Carnegie Institute of Technology, Pittsburgh, Pa (1957).
- 14 E. L. Muetterties and W. D. Phillips, J. Amer. Chem. Soc., <u>81</u>, 1084 (1959).
- 15 R. S. Stringham and M. S. Toy, Paper 74, presented at the 172nd ACS National Meeting, San Francisco, Ca (Sept. 1976).
- 16 K. O. Christe, C. J. Schack, and R. D. Wilson, Inorg. Chem., <u>15</u>, 1275 (1976).

186